

Welcome to RESTAlchemy’s documentation!

Contents:

	Front Matter
	Goals

	Project Info

	Support

	Installation

	Quickstart

	Tutorial

	REST API
	Overview

	API Endpoints

	Query parameters

	Special Endpoints

	Custom endpoints or query parameters

	Examples

	Comparisons

	Configuration
	CORS

	Routes and views

	Renderer

	Response

	Validators

	Roadmap

	API
	Auth

	Cors

	Config

	Exceptions

	Model

	Predicates

	Renderer

	Request

	Response

	Routes

	Sanity

	Utils

	Validators

	Views

	restalchemy changelog
	0.1 (unreleased)

Indices and tables

	Index

	Module Index

	Search Page

Front Matter

A REST framework build on top of Pyramid [https://trypyramid.com] and SQLAlchemy [https://www.sqlalchemy.org/].

If you use the SQLAlchemy [https://www.sqlalchemy.org/] ORM for your models,
you already specify the type of the column,
if it’s nullable, a default value and other properties.

So instead of duplicating what you already specified
in your SQLAlchemy [https://www.sqlalchemy.org/] models and writing validation for your
REST API again either from scratch or with another utility
like marshmallow, RESTAlchemy inspects your models and
derives the API from this.

Of course, sometimes you want to return something else
for some attribute or restrict access to a resource etc.
For that, you have many special RESTAlchemy attributes or functions
that you can use on your model.

You don’t have to jump between your view implementation, the model
and validation code. Everything is right there at your model.
(Of course, you can still split everything up if that’s what you prefer).

Goals

	DRY

Most things you need for your REST API is already specified
in your sql model. What type, what values are allowed,
is it nullable or required, default values, relationships, etc.

There is no need to write extra validation or rendering code.

	Simple to use and extend yet very powerful and flexible

For those attributes that you want to handle differently,
you can easily do that by adding extra methods (or variables)
to your models without much boilerplate.

It’s really easy to only return certain attributes on some
conditions or write your own create/change/query functions.

	Provide a simple and easy to use REST Interface

With a very quick look at a few API calls, the user should
be able to figure out how to query stuff without much thinking
and the URL schema and query parameters should feel “natural”.

You can easily query a resource with some relationships expanded
without having to do multiple calls or stitching your model
back together like in most other REST frameworks.

Project Info

The python restalchemy package is hosted on github [https://github.com/restalchemy/restalchemy].

Releases and project status are available on Pypi [http://pypi.python.org/pypi/restalchemy].

The most recent published version of this documentation is at
http://restalchemy.readthedocs.org/en/latest/index.html.

Support

For questions and general discussion, join our
mailing list [https://groups.google.com/forum/#!forum/restalchemy].

For feature requests or bug reports open a
GitHub issue [https://github.com/restalchemy/restalchemy/issues].

Check the website [https://www.restalchemy.org] for updates.

Installation

Existing app

If you already have a Pyramid [https://trypyramid.com] app and want to extend your app
with REST functionality, simply

$ pip install restalchemy

And add RESTAlchemy to your pyramid.config.Configurator object
with config.include(“restalchemy”).

You have to tell RESTAlchemy how to find your models, for that
you need to set a function with config.set_set_model_function()
that takes a string (which is the model name as part of the URL)
and returns your model class or None.
You can check this function [https://github.com/restalchemy/cookiecutter-restalchemy/blob/master/%7B%7Bcookiecutter.repo_name%7D%7D/%7B%7Bcookiecutter.repo_name%7D%7D/utils.py] from the cookiecutter template for inspiration.

So at minimum you have to add this to your config:

config.include("restalchemy")
config.set_get_model_function("yourapp.utils.get_model")

See Configuration for more infos.

New app

If you want to start a fresh project, it’s best to
use cookiecutter [https://cookiecutter.readthedocs.io]:

$ cookiecutter gh:restalchemy/cookiecutter-restalchemy

and follow the steps show from this command.

Quickstart

The quickest way to get started with a new project
is to use the RESTAlchemy cookiecutter_

cookiecutter gh:restalchemy/cookiecutter-restalchemy

and follow the steps shown from this command.

You can then add your SQLAlchemy [https://www.sqlalchemy.org/] models in the models folder
and import them in models/__init__.py.

RESTAlchemy will automatically provide endpoints to query your
models (HTTP GET) with filter parameters, relationship expansion, etc
and endpoints for model creation (POST), update (PUT), deletion (DELETE).

The template has only a single User model by default that you can
query like:

curl localhost:6543/v1/users

Which would return a list of users in your system:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
 "success": true,
 "timestamp": "2019-01-17T15:13:49.234368+00:00",
 "sort": null,
 "offset": 0,
 "limit": 100,
 "filter": [],
 "count": 1,
 "previous": null,
 "next": null,
 "resource": "users",
 "users": [{
 "created_at": "2019-01-16T17:12:33+00:00",
 "email": "user@example.com",
 "id": 1,
 "name": "User",
 "updated_at": null
 }]
}

Tutorial

Coming soon…

REST API

Overview

RESTAlchemy provides a very intuitive and simple but still very powerful
REST API.

It’s designed for 95% of usages of JSON REST APIs, which is to give
the user easy access to the data storage of your application from
a browser or other apps.

See comparisons to see how RESTAlchemy calls look compared to other
popular frameworks.

API Endpoints

RESTAlchemy uses the common REST API scheme for URLs where you can
access the collection of your resource (on Python side, this would be a
list of your SQLAlchemy models) under /{resource}. You can access one
particular resource (in Python that would be a single instance of your
model) with /{resource}/{ID} and you can access an attribute from this
resource (which can again be a resource or a collection or resources)
with /{resource}/{ID}/{attribute}.

It’s also convention to include the API version in the URL, so
the first path segment must always be the API version. E.g. /v1/.

Quick overview of URL endpoints (need to be prefixed with version number):

	HTTP GET to query:

	
	/{resource}: Return a list of resources.

	/{resource}/{ID}: Return a resource

	/{resource}/{ID}/{attribute}: Return attribute of a resource

	HTTP POST to create:

	
	/{resource}: Create a new resource

	/{resource}/{ID}/{attribute}: Only possible if {attribute} is
list of resources. Then it will append a newly created resource.

	HTTP PUT to update:

	
	/{resource}/{ID}: Update existing resource

	/{resource}/{ID}/{attribute}: Update attribute of existing resource

	HTTP DELETE to delete:

	
	/{resource}/{ID}: Delete resource

	/{resource}/{ID}/{attribute}: Only possible if {attribute} is
a relation to another resources. Then it will delete the resource
and reference to it.

Query parameters

	limit:
Limit the number of entries to return. (default: 100; default maximum limit is 1000)

	offset:
Number of entries to skip. (default: 0)

	sort:
attribute to sort by in descending order. You can optionally specify the sort order by
appending .asc or .desc to the attribute (default: id.asc).
You can also sort by sub-attributes, e.g. GET /v3/creatives?sort=category.name.asc
or by quickstats, e.g. GET /v3/campaigns?quickstats&sort=quickstats.lifetime.clicks.asc.
If you specify a relationship model without specifying an attribute of it you sort by count.
E.g. GET /v3/publishers?sort=sites.desc&limit=5 returns the 5 publishers that have
the most sites.

	depth:
Specifies how attributes that are relationships to another model or a list of other models is returned.
There are 3 options:

	depth=0: don’t return any relationship attributes at all

	depth=1: return a list of attribute IDs (default)

	depth=2: return the expanded attribute objects

	attributes:
comma separated list of attributes you want to have included in your result.
You can also exclude certain attributes bei prepending ‘!’ to the attribute name.
(not set as defaults and all attributes are returned)
e.g. get sites but only return id and names without anything else: HTTP GET to /v3/sites?attributes=id,name
or get advertiser with id 3 but without campaigns and creatives attribute:
/v3/advertiser/3?attributes=!creatives,!campaigns

	expand:
comma separated list of attributes to expand (instead of only showing the ID(s)).
Useful if you don’t want to set depth to a higher value because you only want one or a few
attributes expanded or you set depth to 2 already and want to expand one attribute a level
deeper. (not set as default)
E.g. get all sites and also expand the domains /v3/sites?expand=domain

	attribute filter:
every attribute other then the above (limit, offset, sort, depth, attributes, expand) is used
as a filter for the result set. The URL parameter in general looks like attribute_to_filter=filter_string
If attribute_to_filter is starting with ! the filter is negated.
filter_string can be a comma separated list of multiple values or contain * as wildcard
for matches in strings. (no filter set as default)
E.g. find all .mx TLDs /v3/domains?hostname=*.mx

Special Endpoints

If you use the authentication module from RESTAlchemy,
you get a special /login endpoint to receive an auth token.
What JSON you exactly have to post to this API is depending on the
implementer. See authentiaction for more details.

Custom endpoints or query parameters

RESTAlchemy gives you the full power of Pyramid [https://trypyramid.com], so it’s easy to
overwrite the default URL routes or query parameters or add your own.

See Configuration for a way to change routes/query parameters or create
new ones.

Examples

Usage with curl

To login and receive the authentication token:

$ curl -X POST -d '{"email": "test@example.com", "password": "test"}' -H "Content-Type: application/json" localhost:6543/v1/login

A sample response would be:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Tue, 28 Oct 2014 11:37:25 GMT

{
 "auth_token": "your-long-token-here",
 "message": "test (user id 1) logged in",
 "success": true,
 "user": {
 "created_at": "2014-09-09T15:34:56",
 "email": "test@example.com",
 "id": 1,
 "name": "test",
 "updated_at": "2014-10-14T19:01:11"
 }
}

Now you can pass the auth token in the header of your next request(s) to
access more resources.
To do so add an ‘Authorization’ Header with ‘Bearer ‘ + auth_token as value.

E.g. get all sites:

$ curl -H 'Authorization: Bearer your-long-token-here' localhost:6543/v1/todos

Would result in a json response that lists all TODOs available for the
test@example.com user:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
 "filter": [],
 "limit": null,
 "offset": null,
 "todos": [
 {
 "id": 5,
 "todo": 'todo five',
 "description": "todo description",
 "created_at": "2014-10-29T17:36:42",
 "updated_at": "2014-10-29T17:38:25"
 },
 {
 "id": 9,
 "todo": 'todo nine',
 "description": "todo description",
 "created_at": "2014-10-29T18:36:42",
 "updated_at": "2014-10-29T18:38:25"
 },
 /* {... more todos */ ...}
],
 "sort": "id.asc",
 "success": true,
 "timestamp": "2015-04-03T00:14:35.072516"
}

To create a new entry you have to POST with the necessary data you want to set.
E.g. creating a new todo:

$ curl -H 'Authorization: Bearer your-long-token-here' -X POST -d '{"todo": "test todo", "description": "test description"}' -H "Content-Type: application/json" localhost:6543/v1/todo

Would create a new todo and the response would look like:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8

{
 "todo": {
 "id": 23,
 "todo": "test todo",
 "description": "test description"
 "created_at": "2014-10-28T21:56:44",
 },
 "status": "OK"
}

API Client Libraries

	Python: https://github.com/restalchemy/restalchemy-client-python

	Emacs: https://github.com/restalchemy/restalchemy-client-emacs

	TODO JavaScript: https://github.com/restalchemy/restalchemy-client-javascript

	TODO Go: https://github.com/restalchemy/restalchemy-client-go

Comparisons

Let’s look at some common queries and there outputs with
RESTAlchemy [https://www.restalchemy.org], Eve [https://docs.python-eve.org],
JSON API [https://jsonapi.org/] and
Django Rest Framework [https://www.django-rest-framework.org/]

TODO

Configuration

CORS

TODO

Routes and views

TODO

Renderer

TODO

Response

TODO

Validators

TODO

Roadmap

	Implement query caching

	Return and respect cache control headers (ETag; Last-Modified)

	Automatically create OpenAPI (swagger) specification

This can then be used to quickly create pretty documentation.

	More RESTAlchemy clients

	Improve documentation

API

Auth

Cors

Config

Exceptions

Model

Predicates

Renderer

Request

Response

Routes

Sanity

Utils

Validators

Views

restalchemy changelog

0.1 (unreleased)

	First release

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to RESTAlchemy’s documentation!

 		
 Front Matter

 		
 Goals

 		
 Project Info

 		
 Support

 		
 Installation

 		
 Existing app

 		
 New app

 		
 Quickstart

 		
 Tutorial

 		
 REST API

 		
 Overview

 		
 API Endpoints

 		
 Query parameters

 		
 Special Endpoints

 		
 Custom endpoints or query parameters

 		
 Examples

 		
 Usage with curl

 		
 API Client Libraries

 		
 Comparisons

 		
 Configuration

 		
 CORS

 		
 Routes and views

 		
 Renderer

 		
 Response

 		
 Validators

 		
 Roadmap

 		
 API

 		
 Auth

 		
 Cors

 		
 Config

 		
 Exceptions

 		
 Model

 		
 Predicates

 		
 Renderer

 		
 Request

 		
 Response

 		
 Routes

 		
 Sanity

 		
 Utils

 		
 Validators

 		
 Views

 		
 restalchemy changelog

 		
 0.1 (unreleased)

_static/up.png

_static/up-pressed.png

